
INASP: Effective Network Management
Workshops

Unit 11: Technical Measures

About these workshops
Authors:

• Dick Elleray, AfriConnect

• delleray@africonnect.com
• Chris Wilson, Aptivate

• chris+inaspbmo2013@aptivate.org

Date: 2013-04-29

mailto:delleray@africonnect.com
mailto:chris+inaspbmo2013@aptivate.org

Table of Contents
About these workshops 1

Web Proxies and Caches 4

Objectives 4

License 4

Introduction 4

What is a web proxy? 4

Forward and Reverse Proxies 5

Why use web proxies? 5

Benefits of using a web proxy 5

What is a web cache? 6

Why use web caches? 6

Why not to use web caches? 6

Not transparent 6

Effectiveness is falling 6

Hardware requirements 6

Single point of failure 7

Getting started with Squid 7

Basic installation 7

Configuring your browser 7

Testing the installation 8

Access control by IP address 8

Why do you deny me? 9

Reading the logs 9

Don’t deny me! 10

Reloading and restarting Squid 11

Reverse proxies and open proxies 11

Cache Size 12

Disk cache size 12

Memory usage 12

Squid Access Control 13

Access control elements 13

ACE types 13

The srcdomain ACE: a special case 13

ACEs with multiple values 14

Access control rules 14

Rules with multiple ACEs 14

Rule processing examples 15

Access control practice 15

Solutions 15

Web Proxies and SSL 17

What can we do about it? 17

HTTP and CONNECT requests 17

Results of blocking SSL requests 17

Forcing people to use the proxy 18

Configure pfSense as your router 18

Proxy auto configuration 19

Creating a PAC file 20

DHCP server settings in pfSense 20

Testing Proxy Auto Configuration 21

Proxy Authentication 21

About RADIUS 21

Setting up a RADIUS Server 21

Installing FreeRADIUS on pfSense 22

Configuring FreeRADIUS 22

Adding Users 22

Testing RADIUS Authentication 23

Squid RADIUS Authentication 23

Squid Delay Pools 24

Classes of delay pools 25

Request routing 25

Limitations of pools 26

Simple example 26

More advanced configuration 27

FIN 27

Objectives 27

License 27

Introduction 27

What is bandwidth management? 27

Wired Magazine’s take 28

What are the limitations? 28

What can we do with pfSense? 29

Why use pfSense? 29

How do we start? 29

Kilobits and kilobytes 29

Example configuration 30

Bandwidth Allocation 31

How HFSC Works 31

Configure pfSense as your router 32

Configure the Interfaces 32

Testing 35

Traffic and Ping times 35

Adding more queues 35

Filtering traffic into queues 36

Adding filtering rules 36

Testing 38

Classifying inbound connections 39

FIN 39

Web Proxies and Caches

Objectives
On completion of this session, we hope you will be able to:

• Install and configure a Squid web cache
If you are the facilitator, please tell the group:

At the end of session I will ask if we have met the objectives – if not, we will discuss
again.

License
Some materials reused under the Creative Commons Attribution-NonCommercial-ShareAlike
2.5 license:

• the Web Caching manual, by Richard Stubbs of TENET;
• the BMO Book, by various authors;
• the Squid Cache Wiki, by Amos Jeffries and other.

Introduction

What is a web proxy?
A proxy is a person or thing that acts on behalf of another person or thing.
A web proxy fetches web pages “on your behalf”. So when you want to access a particular
page, instead of requesting it directly, you ask the proxy to request it for you.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://creativecommons.org/licenses/by-nc-sa/2.5/
http://bwmo.net/
http://wiki.squid-cache.org/

Forward and Reverse Proxies

Forward proxy
Operated by the client’s organisation, used by specific clients to connect to (usually) all
web sites (servers).

Reverse proxy
Operated by the server’s organisation, used by (usually) all clients to connect to specific
web sites (servers).

Open proxy
Usually operated by a third party, used by any client to connect to any web server,
potentially dangerous/exploitable.

Why use web proxies?
Web proxies can:

• Require you to log in and authenticate yourself to the proxy.
• Log the web page that you requested.
• Block access to the web page.
• Scan the content for viruses.
• Scan the content for obscenities or banned content.
• Serve a local cached copy of the content.

All of these things can be desirable in an institutional environment, depending on how strict
you want to be in denying or logging web accesses.

Benefits of using a web proxy
For users

They can filter out viruses and other dangeous content. Users may also be forbidden
from directly accessing the Internet by site policy, and must therefore use a proxy for all
web requests.

For administrators
They allow authenticating users, logging and inspecting the content of requests,
associating a user account with a request, and filtering out dangerous or banned
content. As reverse proxies, they can share public IP addresses between multiple

https://www.mediawiki.org/wiki/Wikimedia_Labs/Reverse_proxy_for_web_services

independent applications.

Some reverse proxies are more efficient at serving static content than most web servers
and application servers. You might need to run Apache to host your application, but
Squid, Nginx or Lighttpd would intercept requests for static content, reducing the load
on the application server.

What is a web cache?
The term cache literally means to store. In computing terms caching is the act of storing
information on a local system, where the act of retrieving the information from the local
cache is less than the cost of retrieving the information from the original source.
A web cache is a proxy that can cache copies of downloaded pages and files, and serve them
automatically, following the rules for caching HTTP requests. This is very important because
it ensures that the cache doesn’t serve stale content, which could break web applications.

Why use web caches?
For users

They can return returns faster than accessing the Internet, if the requested document is
already cached.

For administrators
Web caches can reduce your inbound bandwidth needs by up to 40% of your web
traffic.

Why not to use web caches?
AKA: limitations of web caches

Not transparent
Each computer needs to be configured to use the proxy (or you need to use network tricks
such as PAC or interception, described later).

Effectiveness is falling
More and more content is dynamic (not cacheable) and/or served over SSL. Proxies add
overhead to requests for dynamic content, and usually can’t intercept SSL connections as
that would invalidate the security certificate on the connection.

Hardware requirements
A web cache requires a fairly fast server with a lot of disk space to be effective:

• Limit the number of simultaneous web requests from all users to the capacity of the
proxy/cache (usually 50-100 for Squid).

• Slower CPUs will add more overhead to each request.
• Need enough disk space to be effective, otherwise the cache hit rate will fall, so more

requests are slowed down and fewer are accelerated.
• Need enough RAM for OS to cache commonly used cache objects and directories,

otherwise the disk accesses will add overhead to every request.
Note: reverse proxies for static content perform much better than Squid, if the static files are
accessible to the proxy via a shared filesystem.

https://www.mediawiki.org/wiki/Wikimedia_Labs/Reverse_proxy_for_web_services
http://meta.wikimedia.org/wiki/Wikimedia_servers#System_architecture
http://www.cyberciti.biz/tips/using-nginx-as-reverse-proxy.html
https://wiki.diasporafoundation.org/Lighttpd_reverse_proxy

Single point of failure
If all web requests pass through a single server, then if that server fails, all web requests will
fail.
Proxies are good candidates for replication and load balancing, as they are usually stateless
(apart from the cache, but that only affects performance).
However, Squid’s high hardware requirements make it expensive to replicate if you have a
busy network.

Getting started with Squid

Basic installation
To install Squid on an Ubuntu or Debian system:

$ sudo apt-get install squid3
$ service squid3 status

If you’re using the Ubuntu 12.04 Live CD, it may fail to start due to a bug in the Ubuntu
12.04.3 Live CD. Then you need to run these commands:

$ sudo initctl reload-configuration
$ sudo start squid3

Configuring your browser
Reconfigure your web browser to use the proxy.
In Firefox for example, go to Edit/Preferences:

Then go to the Advanced tab, under that choose Network, and click on the
Connection/Settings button:

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/882147

• Choose Manual proxy configuration;
• For HTTP proxy enter 127.0.0.1, assuming that you want to connect to Squid

running on the same host;
• For Port enter 3128, the default port for Squid.

Testing the installation
Now try to access a website in the browser. What happens?
How can you tell if you’re using the proxy? Look at the logs:

$ sudo tail /var/log/squid3/access.logging

You should see your IP address, the URL accessed, page size, etc. You’ll also see a separate
request line for any image included by the page.

Access control by IP address
Try to configure a different computer to access your proxy server, for example your laptop.
What happens?

What caused the Access Denied error? We need to find out how Squid access control works.
It’s defined in the Squid configuration file, /etc/squid3/squid.conf, by the following
lines:

acl localhost src 127.0.0.1/32 ::1
acl localnet src 10.0.0.0/8 # RFC1918 possible internal network
http_access allow localnet
http_access allow localhost
http_access deny all

What does this mean?
acl localhost src 127.0.0.1/32 ::1

This ACL condition is true if the request’s source (i.e. the client’s IP address) is either
127.0.0.1 or ::1.

acl localnet src 10.0.0.0/8
This is a commented-out example of an ACL condition called localnet (local
network), which would be true if the client’s IP address was in the subnet 10.0.0.0/8.

http_access allow localnet
This is a commented-out example of an ACL rule that allows HTTP access (clients
connecting to port 3128) to any host where the localnet ACL condition is true.

http_access allow localhost
This is a real ACL rule that allows HTTP access to any host where the localhost ACL
condition is true.

http_access deny all
This ACL rule denies HTTP access to anyone else. It always matches, but rules are
applied in order, so the http_access allow localhost rule applies first.

Why do you deny me?
Questions:

• What IP address did we try to access the cache from?
• If you don’t know, how would you find out?
• Is it allowed or denied by the rules? Which rule in particular?
• How would you change it? What would you have to add?

If you don’t know the client’s IP address, have a look at the logs.

Reading the logs
Here is an example line from the Squid log file:

1381327552.088 0 10.0.156.126 TCP_DENIED/403 4425 POST
http://safebrowsing.clients.google.com/safebrowsing/downloads? - NONE/- text/html

The IP address is the third field on the line, 10.0.156.126 in this case.
What are the other fields?
1381327552.088

This is the time of the log entry, in Unix timestamp format. Unambiguous, but hard to
read. You can convert it on the command line:

date --date '@1381327552'
Wed Oct 9 14:05:52 UTC 2013

0
Duration, or elapsed time. How long it took to process the request, and return a
response, in milliseconds.

10.0.156.126
The IP address of the requesting instance, the client IP address. The client_netmask
configuration option can distort the clients for data protection reasons, but it makes
analysis more difficult.

TCP_DENIED/403
This column is made up of two entries separated by a slash: the cache result
(TCP_DENIED) and the HTTP status code returned to the client (403).

4425
The length of the response sent to the client, in bytes.

POST
The HTTP method requested by the client. Usually this is GET to retrieve a web page or
image, and POST when submitting a form. See the HTTP standard (RFC 2616) for more
details.

http://safebrowsing.clients.google.com/safebrowsing/downloads?
The URL requested by the client.

-

The ident lookup result. Usually this is useless and turned off.
NONE/-

The hierarchy code, which consists of three items: the optional prefix TIMEOUT; A code
that explains how the request was handled, e.g. by forwarding it to a peer, or going
straight to the source; and the IP address or hostname where the request (if a miss) was
forwarded to, which might be the origin server, or a neighbor cache.

text/html
The MIME type of the response, which usually indicates whether it is a web page, an
image, a downloadable executable file, etc. This is sent by the origin server, not
determined by Squid, and is not guaranteed to be correct.

Thanks to Amos Jeffries for writing the Squid Wiki LogFormat page where this information
was found.

Don’t deny me!
How do we change the access control configuration, to allow connections from a different IP
address?
Add the following lines to the Squid configuration file:

http://safebrowsing.clients.google.com/safebrowsing/downloads
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://safebrowsing.clients.google.com/safebrowsing/downloads
http://wiki.squid-cache.org/Features/LogFormat

acl localnet1 src 10.0.156.0/24
http_access allow localnet1

Note that:

• The ACL name must be unique. It should also be descriptive. Don’t call all your local
networks localnet or localnet1.

• These lines must appear before http_access deny all. (Why?)
• It’s probably safest, and easier to read the configuration file, if you keep all of your

own ACL configuration lines between http_access allow localhost and
http_access deny all.

Reloading and restarting Squid
What happens when you change the configuration? Does it automatically take effect?
No. Squid doesn’t reload its configuration file automatically. You need to restart it:

$ sudo restart squid3

Or tell it to reload its configuration:

$ sudo /etc/init.d/squid3 reload
or
$ sudo squid3 -k reconfigure

Restarting is slow, because it waits for open connections to finish. No requests are serviced
during this time, so web access is impossible. The reload and reconfigure commands
(which do the same thing) don’t cause any downtime for the service, and don’t clear the
in-memory caches (cache_mem and the DNS cache), so they are usually a better choice.
However, if you enable cache_dir then Squid needs to shut down and restart in order to
initialize it. Just a reload isn’t enough, and it won’t cache anything on disk until you
restart it.

Reverse proxies and open proxies
Why not just allow everyone? Like this:

acl everyone src 0.0.0.0/24
http_access allow everyone
http_access allow all

Because this would create an open proxy, which is bad because:

• People outside the organisation can waste your bandwidth.
• They can also conduct illegal activities using your proxy, and the police will come

knocking on your door instead of theirs.
• Spammers often use open proxies to send spam.
• As a result, some realtime blacklists (RBLs) scan for open proxies and when they find

one, they add its IP address to their blacklist.
So every proxy should do one of the following:
Forward proxy

Restrict access to certain source IP addresses
Reverse proxy

Restrict access to certain destination domains (with the acl dstdomain).

Further configuration of reverse proxies is out of scope of this tutorial, but you can find
more details on the Squid Cache wiki.

Cache Size
The cache size determines the hit rate (bandwidth and time saving) of the Squid proxy
server, trading off against disk space and memory usage.
Making the caches too large for the system can result in complete failure of the proxy server,
starvation of resources from other applications on the same server, and eventually swap
death of the server.

Disk cache size
The default configuration on Ubuntu contains the following:

#cache_dir ufs /var/spool/squid3 100 16 256

How big is the default disk cache size? Do we want to change it?
There is NO uncommented cache_dir by default, so there is no disk cache. There is
however a memory cache of 256 MB:

cache_mem 256 MB

(This is the default unless an uncommented cache_mem line is found in the file, which
there isn’t in the default Ubuntu configuration.)
The 100 in the above configuration means that the cache would be 100 MB, if it was
enabled. A more useful cache size would be 10-100 GB, so you could uncomment this line
and change it to:

cache_dir ufs /var/spool/squid3 10000 16 256

Note that this will place the cache in the directory /var/spool/squid3. This filesystem
must not fill up, otherwise the cache will stop working, and nobody will be able to browse
the web! Make sure that you don’t allow the cache to grow larger than the free space on the
filesystem, which you can tell with the df command.
Also, leave enough space for anything else using the same filesystem, so that it doesn’t fill
up. Log files, mailboxes and SQL databases usually live under /var, and if you don’t have a
separate filesystem for them, /home and /tmp will also take space away from the Squid
cache.

Memory usage
Memory that will be used by Squid:

• about 10 MB of RAM per GB of cache specified by your cache_dir directive;
• plus the amount specified by the cache_mem directive;
• plus another 20 MB for additional overhead.

You need to ensure that there’s enough memory left for the OS and its block cache.
For example, if you set cache_dir to 10000 (10 GB) and leave cache_mem set to the
default 256 MB, then Squid will use approximately 100 + 256 + 20 = 376 MB.
If this is more than half the RAM in your cache server, then reduce either the cache_dir
or cache_mem, or add more memory to the cache server.

http://wiki.squid-cache.org/SquidFaq/ReverseProxy

Squid Access Control
Access control determines which requests are allowed or denied by the Squid proxy server. It
also determines which requests are routed into which delay pools (bandwidth limits).

Access control elements
Every line in the configuration file that starts with acl is an Access Control Element (ACE).
These are reusable sets of conditions:

• You can use them in as many rules as you like,
• and combine them with each other in rules.

Every ACE must be defined, which gives it a unique name. The definition looks like this:

acl <name> <type> <values>

For example, the ACL we created earlier:

acl localnet1 src 10.0.156.0/24

Has the name localnet1, type src (source IP address) and value (which is specific to the src
type) 10.0.156.0/24.

ACE types
The type determines what kinds of values are appropriate:

ACL
type Values Example

src source (client) IP addresses or CIDR
ranges

10.0.156.1, 10.0.156.0/24,
2001::dead:beef

dst destination (server) IP addresses or CIDR
ranges

10.0.156.1, 10.0.156.0/24,
2001::dead:beef

dstdomain destination (server) domain name,
exact/prefix

www.facebook.com,
.facebook.com

dstdom_regexdestination (server) regular expression
pattern

.facebook..*

maxconn
<N>

client IP address has more than N TCP
connections

10

proto the protocol part of the requested URL HTTP, FTP

time days (SMTWHFA) and time range
(h1:m1-h2:m2)

19:00-23:59,
MTWHF 08:00-18:00

url_regex regular expression match on requested
URL

sex, iso, mp3

browser
[-i]

pattern match on User-Agent header -i MSIE 6.1

The srcdomain ACE: a special case
If you block .microsoft.com, does it block microsoft.com as well as
www.microsoft.com? Why?

Answer: Yes it does, because of a specific exception in the Squid source code. Many websites
are accessible with and without the www subdomain, by convention, and it would be
annoying to have to specify every domain twice, with and without the initial dot ., to match
both of them.

ACEs with multiple values
The values are combined using OR logic. If any value matches, the whole ACE matches. So
it’s valid to include mutually exclusive values on the same ACE:

acl mynetworks src 192.168.1.0/24 192.168.3.0/24
acl updates dstdomain .microsoft.com .adobe.com

What happens if you specify overlapping domains? For example:

acl updates dstdomain .microsoft.com .download.microsoft.com

The Squid FAQ says:
You can’t have one entry that is a subdomain of another. Squid will warn you if it
detects this condition.

Access control rules
Rules look like this:

http_access allow <ace name> <ace name>
http_access deny <ace name> <ace name>
delay_access <pool> allow <ace name> <ace-name>

There are several different types of rules, all ending with _access:
http_access

Control whether a client is allowed to make a particular request through the HTTP port
(3128)

icp_access
Control whether a cache peer is allowed to make a particular request through the ICP
port. Could this be abused, and how?

cache_peer_access
Control which requests will be sent to a particular cache peer. This type of rule needs a
parameter; why?

delay_access
Control which requests will be sent to a particular delay pool. This type of rule needs a
parameter; why?

snmp_access
Control access to the built-in SNMP server (need to recompile Squid on Debian and
Ubuntu to use this).

Rules with multiple ACEs
The ACEs on an access control rule are combined using AND logic. All the ACEs must be
true, otherwise the rule will be ignored for that request.
Rules are processed in order, and the first matching rule (where all the ACEs are true) of a
particular type determines what happens for that rule type.

http://wiki.squid-cache.org/SquidFaq/SquidAcl#Squid_doesn.27t_match_my_subdomains

Examples:

• The first matching http_access rule determines whether an HTTP request is allowed
or denied.

• The first matching cache_peer_access rule determines whether the request is sent
to a peer cache, and which one.

• The first matching delay_access rule determines whether the request is sent to a
delay pool, and which one.

Rule processing examples
Which hosts and domains are allowed, which are denied, and which are sent to a peer cache
in the following configuration?

acl microsoft dstdomain .microsoft.com acl wireless src 10.0.158.0/24 http_access allow
all http_access deny wireless cache_peer_access updates allow microsoft
cache_peer_access updates deny all

Access control practice
Try blocking the following, and get someone else to check your work:

• a particular client IP address
• the subnet that your client is on
• a subnet that your client is NOT on
• www.facebook.com

• except for one client IP address
• and try to evade the ban
• did you just block http://www.bing.com/search?q=facebook as well?
• how would you do that?

• any website with sex in the URL
• did you just block http://www.essex.ac.uk/?
• more than 2 connections per client IP address (how would you test it?)
• FTP downloads from ftp://www.mirrorservice.org/

Remember to follow a good, thorough process for each exercise:

• decide beforehand how you will test for success;
• check that your request is not already blocked;
• make the change to implement the block;
• check that it behaves as you expected;
• undo the change before moving on to the next;
• check that the request is allowed again.

Otherwise you might think that you succeeded, when actually the request was blocked by
some previous configuration that you didn’t undo successfully.
Be careful if you test using a site that automatically redirects you to SSL, such as
www.google.com or www.duckduckgo.com, as this will bypass the cache without you
realising! You can test with www.bing.com as it doesn’t do that at the time of writing
(2013-10-09).

Solutions
Block a particular client IP address:

acl bad_boy src 10.0.156.126
http_access deny bad_boy

Block the subnet that your client is on:

acl bad_boys src 10.0.156.0/24
http_access deny bad_boys

Block a subnet that your client is NOT on:

acl bad_boys src 10.0.157.0/24
http_access deny bad_boys

Block www.facebook.com:

acl facebook dstdomain www.facebook.com
http_access deny facebook

Allow Facebook only for a single client IP address:

acl facebook dstdomain www.facebook.com
acl good_boy src 10.0.156.126
http_access allow good_boy
http_access deny facebook

Try to evade the ban:

• go to http://m.facebook.com instead
• go to https://www.facebook.com instead

Did you just block http://www.bing.com/search?q=facebook as well?
Block any website with sex in the URL:

acl sex url_regex sex
http_access deny sex

Prevent more than 2 connections per client IP address:

acl too_many_connections maxconn 2
http_access deny too_many_connections

Testing that it worked:

• ab -X localhost:3128 -n 10 -c 2 http://www.mirrorservice.org/ (2
concurrent requests) should show no errors: Non-2xx responses: 0

• ab -X localhost:3128 -n 10 -c 3 http://www.mirrorservice.org/ (3
concurrent requests) should show some errors, e.g. Non-2xx responses: 8

Block all FTP downloads:

acl ftp proto ftp
http_access deny ftp

Note: you will need to configure your browser to use the proxy for FTP as well as HTTP
requests.

Web Proxies and SSL
Web proxies can’t intercept SSL connections, because:

• they would have to sign the response pages (to be SSL compliant)
• and nobody except Facebook has the keys to sign responses as www.facebook.com (we

hope!)
• so the proxy could not create a valid signature
• and the browser would complain about an invalid signature
• this is exactly what SSL security is supposed to do!

What can we do about it?
• Put a fake Certificate Authority (CA) in all the browsers and have the proxy sign

responses with that certificate (hard to reach all devices and browsers!)
• Or use browser support for the CONNECT method.

HTTP and CONNECT requests
An HTTP request looks like:

> GET http://www.google.com/ HTTP/1.0
> Headers...

< Response...

A CONNECT request looks like this:

> CONNECT www.google.com:80
> Encrypted traffic
< Encrypted traffic

With CONNECT, the proxy only sees the hostname connected to, not the page requested or
any other details about the connection. We can filter on hostname, and that’s about it. For
example, if the browser is configured to use our proxy for all requests, then this ACL blocks
Facebook SSL as well:

acl facebook dstdomain .facebook.com
http_access deny facebook

Results of blocking SSL requests
What happens in the browser?

This is a lie! The proxy didn’t refuse the connection at all. It did however refuse to service
the request. It returned an error page, but Firefox won’t display it for you because it’s not
encrypted.
How can you tell? Look at the logs:

1381400327.288 0 10.0.156.121 TCP_DENIED/403 3631 CONNECT
www.facebook.com:443 - NONE/- text/html

This is just a limitation of SSL filtering that we have to live with.

Forcing people to use the proxy
People can just disable their proxy configuration to work around blocks. What can you do
about it?
First, we need to block direct access to HTTP and HTTPS ports (80 and 443) for all clients
except the proxy server.

Configure pfSense as your router
To do these exercises using pfSense, configure your virtual network as follows:

In other words:

• The external interface of the pfSense virtual machine (Network Adapter 1) is Bridged
with the external interface of your server (probably eth0).

• If your server has two network interfaces, then the internal interface of the pfSense
virtual machine (Network Adapter 2) is Bridged with the internal interface of your
server (probably eth1), and so is the only network interface (Network Adapter 1) of your
client Virtual Machine. This allows you to connect laptops to eth1 and use them to test
your connection, as well as the client Virtual Machine.

• If your server has only one network interface, then the internal interface of the pfSense
virtual machine (Network Adapter 2) is connected to the Internal Network pfsense, and so
is the only network interface (Network Adapter 1) of your client Virtual Machine. This
only allows you to test your connection from the client Virtual Machine.

Then configure pfSense to block ports 80 and 443 outbound from LAN:

• Open the pfSense webConfigurator and log in

• This is probably at http://192.168.1.1/ from your laptop or VM, connected to the
internal interface em1 of the pfSense VM, unless you’ve reconfigured pfSense to
change the LAN subnet.

• From the menu choose Firewall/Rules
• Click on the LAN tab
• Click on the pfSense “add rule” button
• Add a rule to reject TCP traffic on the LAN interface to destination port HTTP (80).
• Add another rule before this one, to pass TCP traffic on the LAN interface to

destination port 80 from the proxy server VM (Under Source, choose Single host or
alias, and enter the IP address of the proxy server VM)

• Repeat the same rules for HTTPS (port 443).
Your rules should now look like this:

Apply these rules in pfSense. Check that you can access websites from the proxy server VM,
and not from other clients. Other traffic such as ping should still work from all clients.

Proxy auto configuration
This is how Web Proxy Auto Detection works:

• The DHCP server gives clients a special option (number 252) which includes the URL of
a WPAD server.

• If it doesn’t, then clients will use the URL http://wpad.<domainname>/wpad.dat.
• The client will try to download this file (a Proxy Auto Configuration or PAC file) and

execute it as JavaScript.
• The JavaScript can examine each requested URL, and must return the details of which

proxy server to use for that URL.

http://192.168.1.1/

Creating a PAC file
You need a web server to host the file for you. If you already installed Apache on the
Ubuntu virtual machine (the proxy server VM) during the Linux Familiarization session,
then you don’t need to do anything. Otherwise, install Apache on the proxy server VM:

$ sudo apt-get install apache2

Use an editor to create the file /var/www/wpad.dat, for example:

$ sudo vi /var/www/wpad.dat

And add the following contents:

function FindProxyForURL(url, host)
{
 return "PROXY 192.168.1.1:3128";
}

Now you should be able to retrieve the file using a client’s web browser, by visiting the URL
http://192.168.1.100/wpad.dat. Otherwise, please check:

• the IP address of the proxy server (which may not be 192.168.1.100);
• that the Apache web server is running on it;
• the permissions on the wpad.dat file should be world readable.

DHCP server settings in pfSense
Now reconfigure the pfSense firewall to hand out the URL of the wpad.dat file to all DHCP
clients:

• Open the pfSense webConfigurator and log in.
• From the menu choose “Services/DHCP Server”.
• Scroll down to Additional BOOTP/DHCP options and click on the Advanced button.
• For Number enter 252, and for Value enter the URL of the wpad.dat file.
• Click the Save button.

https://github.com/aptivate/inaspmaterials/blob/master/src/Network_Management/One_Week_Training_Course/Linux_Familiarization_and_Commands_Exercises.rst#installing-software

Testing Proxy Auto Configuration
To test this, you may need to force your clients to renew their DHCP leases, and enable
proxy autodetection. In Internet Explorer this is under Tools/Internet Options, Connections,
LAN Settings, Automatically Detect Settings:

Proxy Authentication
The aim of proxy authentication is to:

• Ensure that unauthorised clients don’t use your proxy servers (to carry out illegal
activity on your behalf, or waste your bandwidth); and

• Ensure that each request is accountable to a particular user.

About RADIUS
What is RADIUS?

• Remote Authentication Dial-In User Service.
• Provides authentication: checking usernames and passwords against a database.
• Provides authorization: details about which services a user is allowed to access.
• Commonly used by network switches and access points to authenticate users for the

802.1x protocol.
• RADIUS service can be linked to an Active Directory server.

For more details on RADIUS, see this presentation or the Wikipedia page.

Setting up a RADIUS Server
RADIUS is a client-server protocol, so we need a server. It’s easy to install and manage the
FreeRADIUS software on pfSense, so we’ll use that.
More detailed instructions on installing and using FreeRADIUS on pfSense can be found in
the pfSense Documentation.

http://www.ws.afnog.org/afnog2013/sse/index.html#radius
https://en.wikipedia.org/wiki/RADIUS
https://doc.pfsense.org/index.php/FreeRADIUS_2.x_package

Installing FreeRADIUS on pfSense
To quickly install a RADIUS server (FreeRADIUS):

• Open the pfSense webConfigurator and log in.
• From the menu choose System/Packages.
• Scroll down to freeradius2.
• Click on the + icon to right of the package details.

Configuring FreeRADIUS
Having installed FreeRADIUS, we have to configure it.

• In the pfSense webConfigurator menu, choose Services/FreeRADIUS.
• Click on the Interfaces tab, and click on the Add a new item icon on the right.
• Leave all the setting unchanged, and click on the Save button.
• Now click on the NAS/Clients tab, and click on the Add a new item icon on the right.
• For Client IP Address enter the IP address of the Squid server (which might be

192.168.1.100).
• For the Client Shortname enter squid.
• For the Client Shared Secret enter a long random password, that will also be entered on

the Squid server. For testing purposes, set it to testing123. Please be sure to change
this password if you move to production!

• For Description enter Squid Proxy Server.

Adding Users
• In the pfSense webConfigurator menu, choose Services/FreeRADIUS.
• Click on the Users tab, and click on the Add a new item icon on the right.
• Enter a Username and Password for the new user. Clients will have to log in as one of

these users, to use the proxy server. For testing purposes, you can create a user called
john with password smith. Please be sure to delete this user if you move to
production!

• Leave the other settings unchanged and click on the Save button.

Testing RADIUS Authentication
On the Squid proxy server, install the radtest application:

$ sudo apt-get install freeradius-utils

And run a test against the server:

$ radtest john smith 192.168.1.1 1812 testing123

You should see an Access-Accept response if everything is OK:

Sending Access-Request of id 92 to 192.168.1.1 port 1812
 User-Name = "john"
 User-Password = "smith"
 NAS-IP-Address = 127.0.1.1
 NAS-Port = 1812
rad_recv: Access-Accept packet from host 192.168.1.1 port 1812, id=92, length=20

Otherwise please check:

• the IP address and shared secret for the server on the radtest command line;
• the username and password that you used, which must match a FreeRADIUS user on

the pfSense firewall;
• the IP address of the Squid server and the shared secret, in the FreeRADIUS

configuration of the pfSense firewall.
Can you access the RADIUS server from any other computer? Why, or why not? What’s the
benefit of this configuration?

Squid RADIUS Authentication
You need to configured the Squid proxy server with the details of the RADIUS server to
connect to.
On the Squid server, create the file /etc/squid3/radius_config with the editor of
your choice, for example:

$ sudo vi /etc/squid3/radius_config

Place the IP address of the RADIUS server (the pfSense firewall’s LAN address) and the
shared secret in this file. For example:

server 192.168.1.1
secret testing123

Test it by running squid_radius_auth on the command line:

$ /usr/lib/squid3/squid_radius_auth -f /etc/squid3/radius_config

Enter a RADIUS username and password, separated by a space, for example:

john smith

You should see the output OK. Press Ctrl+C to stop the authenticator process.

Now edit your Squid configuration and add the following lines, to require all Squid users to
authenticate themselves, just before the existing line http_access deny all (which you
don’t need to duplicate):

auth_param basic program /usr/lib/squid3/squid_radius_auth -f /etc/squid3/radius_config
auth_param basic children 5
auth_param basic realm Web Proxy
auth_param basic credentialsttl 5 minute
auth_param basic casesensitive off

acl radius-auth proxy_auth REQUIRED
http_access allow radius-auth
http_access deny all

Remember to remove or comment out any http_access allow lines that give access to
all users without authentication. Tell Squid to reload its configuration and test it.
Squid tends to kill itself if it has problems accessing an authenticator. So if it’s not working,
and you can’t access any web pages, check that Squid is still running:

$ status squid3

If not (if it says stop/waiting) then check the cache log file to find out why it died:

$ sudo tail -30 /var/log/squid3/cache.log

For example, it might say this:

FATAL: auth_param basic program /usr/local/squid/libexec/squid_radius_auth: (2) No such file or directory
Squid Cache (Version 3.1.19): Terminated abnormally.

Which means that the path to the squid_radius_auth program is wrong in the Squid
configuration file.

Squid Delay Pools
Squid has a feature called delay pools that can throttle users’ bandwidth usage for web
downloads to a certain amount.
Each pool behaves like a coffee pot:

• People remove large chunks of bandwidth (coffee) when they make a request.
• Requests are satisfied immediately while the pool is not empty (while coffee remains in

the pot).
• When the pool (coffee pot) is empty, all requests must wait for it to refill.
• The pool refills at a fixed rate.

Technically this is known as a Token Bucket Filter (TBF).

Classes of delay pools
You can have any number of pools. You can configure each pool’s type (class) to one of the
five built-in classes:
class 1

a single unified bucket which is used for all requests from hosts subject to the pool.
class 2

one unified bucket and 255 buckets, one for each host on an 8-bit network (IPv4 class
C).

class 3
contains 255 buckets for the subnets in a 16-bit network, and individual buckets for
every host on these networks (IPv4 class B).

class 4
as class 3 but in addition have per authenticated user buckets, one per user.

class 5
custom class based on tag values returned by external_acl_type helpers in http_access.
One bucket per used tag value.

Request routing

The delay_access rules determine which pool is used for each request.

The type (class) of the pool, and the current state of its buckets, determine how much
bandwidth is available for that request.

Limitations of pools
Each pool is completely independent of all other pools.
Each pool contains one or more buckets, which are completely independent of all other
buckets.
The allocation of requests to buckets within a pool determines who shares bandwidth within
the pool:
class 1 pool

All users share the same bucket, and so they share bandwidth with each other.
class 2 pool

All users share a bucket, but each has their own bucket (one per IP address) as well.
class 3 pool

All users share a global bucket, and one bucket with their subnet. So all 192.168.1.x
users share a bucket, and all 192.168.2.x share a different bucket.

class 4 pool
In addition to class 3, each authenticated user gets their own bucket as well.

class 5 pool
Only works if you use an external_acl_type ACL to assign a tag to each request.
Each unique tag value gets its own bucket. You can use this to assign users to buckets in
any custom scheme that you like.

Simple example
To have all users share a single pool with 256 kbps bandwidth, add the following to your
Squid configuration:

delay_pools 1
delay_class 1 1
delay_parameters 1 32000/64000
delay_access 1 allow all

How can we test it? Using wget:

$ export http_proxy=http://john:smith@localhost:3128
wget http://www.mirrorservice.org/sites/mirror.centos.org/6/isos/x86_64/CentOS-6.4-x86_64-bin-DVD1.iso

Questions:

• What does this Squid configuration do?
• What speed do we expect to see?
• What happens at the beginning of the download?
• What happens if you run two downloads at the same time?

Answers:
delay_pools 1

There is only one pool: number 1.
delay_class 1 1

Pool 1 is a class-1 pool.
delay_parameters 1 32000/32000

Pool 1 refills at 32 kilobytes per second, up to a maximum level of 64000 bytes.

delay_access 1 allow all
All requests are routed into pool 1.

We should see an initial high speed burst for 1-2 seconds, and then the download should
slow down to 32 kiloBytes per second (kBps).
If more users download at the same time, they will share bandwidth equally between them
(kBps each).

More advanced configuration
How would you give each authenticated user 512 kbps, and limit all users to 4 Mbps at the
same time?
What class of delay pool do you want to use?
Hint: the delay_parameters line for this class has the following format:

delay_parameters <pool> <aggregate> <network> <individual> <user>

And you can use -1/-1 as the value to have unlimited capacity in a certain set of buckets.
Answer:

delay_pools 1
delay_class 1 4
delay_parameters 1 64000/64000 -1/-1 -1/-1 512000/512000
delay_access 1 allow all

FIN
Any questions? Bandwidth Management with pfSense –––––––––––

Objectives
On completion of this session, we hope you will be able to:

• Configure traffic queues in pfSense
• Classify traffic into queues
• Monitor and debug bandwidth management

If you are the facilitator, please tell the group:
At the end of session I will ask if we have met the objectives – if not, we will discuss
again.

License
Some materials reused under the Creative Commons Attribution-NonCommercial-ShareAlike
2.5 license:

• the Web Caching manual, by Richard Stubbs of TENET;
• the BMO Book, by various authors;
• the Squid Cache Wiki, by Amos Jeffries and other.

Introduction

What is bandwidth management?
Similar to traffic management on roads:

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://creativecommons.org/licenses/by-nc-sa/2.5/
http://bwmo.net/
http://wiki.squid-cache.org/

• Give some vehicles priority over others (e.g. emergency services)
• Keep one lane clear for priority vehicles
• Limit the number and length of car journeys
• Efficiency savings: reduce the need for car journeys (public transport, local markets and

supermarkets)
• Make better use of unused capacity: encourage spreading of load into off-peak periods
• Increase the cost of petrol, or charge tolls
• Arrest people for driving slowly

Also called traffic shaping (which is reasonable) and packet shaping (which is not. What shape
are your packets?)

Wired Magazine’s take
Most ISPs actively engage in traffic shaping, bandwidth throttling, connection denial or
some such tactic to keep the amount of bandwidth consumed by high traffic
applications on their networks to a minimum. While this does often ensure better
performance for everyone in the neighborhood, it can mean painfully slow transfer
speeds for [peer to peer file sharing applications.]

While there are valid arguments for and against shaping, we’re not here to debate. We
just want the fastest BitTorrent transfers possible.

http://howto.wired.com/wiki/Optimize_BitTorrent_To_Outwit_Traffic_Shaping_ISPs

What are the limitations?
From Ginsberg’s theorem (Laws of Thermodynamics):
You can't win.

Bandwidth management will not make your connection faster. It’s just benefiting “more
desirable” traffic at the expense of “less desirable.” Everyone’s traffic is desirable to
them, so some people will always be upset and you need a strong policy argument to
defend yourself with.

You can't break even.
Bandwidth management is not free. You have to reduce your total bandwidth in order
to own and control the queues. And you have to invest a lot of effort into developing,
understanding and maintaining your policy.

You can't even get out of the game.
Parkinson’s law says that Work expands so as to fill the time available for its completion.
The same applies to traffic and capacity. Unless you manage traffic, you will have
chaos.

Some other limitations:
Traffic doesn't declare its type or priority.

In fact, users can try to hide their traffic, for example in a VPN or with encryption to
evade restrictions on P2P or take advantage of higher service classes.

Bandwidth management is hard to do.
Bandwidth management applies to TCP/IP packets and network interfaces, and
debugging tools are very limited (you can’t even see what packets are in which queue),
so you need a deep understanding of what’s going on, end to end across the Internet.
You often need to spend significant time monitoring and investigating traffic patterns,
or create and test a theory, to understand and solve a problem.

For example you might have to differentiate between:

• Skype voice traffic (UDP encapsulated, encrypted, random ports, might be direct or via
a gateway in Czechoslovakia or a Microsoft IP address)

http://howto.wired.com/wiki/Optimize_BitTorrent_To_Outwit_Traffic_Shaping_ISPs
http://howto.wired.com/wiki/Optimize_BitTorrent_To_Outwit_Traffic_Shaping_ISPs

• VPN traffic to a BitTorrent anonymiser in the Netherlands? (OpenVPN to UDP port
1194).

• Your own VPNs (OpenVPN to UDP port 1194).
Or how about distinguishing between large HTTP/SSL downloads and ordinary web page
browsing?
You may have to write rules, exceptions and exceptions to exceptions, one per class of
traffic, to stay on top of assigning traffic to the correct classes.
Sometimes it’s easier to create a whitelist: for example you can filter traffic from known
good sites (academic publishers, etc.) into classes with high priority access to
bandwidth/capacity.

What can we do with pfSense?
• Keep one lane clear (reserve bandwidth)
• Limit the number and length of car journeys (restrict bandwidth)
• Efficiency savings (block some kinds of traffic)

Why use pfSense?
Linux also has a traffic management framework. Why do we use pfSense instead of Linux?

• Advantages: * Nice point and click interface * Graphical display of bandwidth used by
each class * Slightly easier to use

• Disadvantages:
• Limited features: no SFQ? no per-connection byte counters?

For more information you can read:

• OpenBSD PF: Packet Queueing and Prioritization (pfSense uses the same pf packet
filter as OpenBSD).

• Managing Traffic with ALTQ (pfSense is based on ALTQ).
• Hierarchical Fair Service Curve
• ALTQ/CBQ Performance (CPU overhead of scheduling packets)
• How Unfair can Weighted Fair Queuing be? (limitations of work-conserving qdiscs).

How do we start?
Limit the maximum bandwidth in and out of firewall.

• Advantage: allows us to control the queues.
• Disadvantages: * Requires that we know how much bandwidth is available; * Reduces

the available bandwidth; * Limits are per-interface, so interface load balancing doesn’t
work.

Why is this a problem? Because we often don’t know exactly how much bandwidth is
available to us. Contention at the ISP may result in us having less bandwidth than expected
at peak times. In order to control the queue, we have to limit bandwidth to the worst case
that we expect, or live with imperfect control.
The ISP may impose their own bandwidth management on our traffic, which is outside our
control.

Kilobits and kilobytes
Questions:

• What does kbps mean?
• What does kBps mean?
• Convert 128 kbps to kBps
• Convert 128 kBps to kbps

https://www.privateinternetaccess.com/
http://www.lartc.org/
http://blog.aptivate.org/en/blog/2011/08/05/traffic-shaping-with-pf-altq-and-hfsc/
http://www.openbsd.org/faq/pf/queueing.html
https://www.usenix.org/legacy/event/usenix99/full_papers/cho/cho.pdf
http://www.cs.cmu.edu/~hzhang/HFSC/main.html
http://www.sonycsl.co.jp/~kjc/cbq/perf.html
http://eden.dei.uc.pt/~edmundo/Conf%20Internacionais/CI022%202000%20ISCC%20Quadros_1.pdf

• Why do we use different units?
Answers:

• kbps is kilobits per second (little b = bits, because bits are smaller), also called Kbit/s or
Kb/s.

• kBps is kilobytes per second (big B = bytes, because Bytes are Bigger), also called
Kbyte/s or KB/s.

• 128 kbps / 8 = 16 kBps
• 128 kBps * 8 = 1024 kbps
• We use different units because interfaces transmit one bit at a time, so their capacity is

measures in bits per second; but computers work with whole bytes, so bytes per second
is a more logical measure?

Example configuration
Limit total bandwidth to:

• 1024 kbps download
• 256 kbps upload

Decide how much bandwidth we want to allocate, and to what. For example:

• Upload: * 50% reserved for Voice over IP (VoIP). * 30% reserved for HTTP, plus
borrowing from remaining traffic (70%). * 20% remaining for all other traffic.

• Download: * 12.5% reserved for Voice over IP (VoIP). * 70% reserved for HTTP, plus
borrowing from remaining traffic (70%). * 17.5% remaining for all other traffic.

Question? How much bandwidth (kbps) is reserved for each class?
Why different policies for upload and download?
Answers:

• Upload: * VoIP: 50% x 256 kbps = 128 kbps * HTTP: 30% x 256 kbps = 76.8 kbps *
Other: 20% x 256 kbps = 51.2 kbps

• Download: * 12.5% x 1024 kbps = 128 kbps * 70% x 1024 kbps = 716.8 kbps *
17.5% x 1024 kbps = 179.2 kbps

VoIP tends to be symmetrical. We’d like to allocate 128 kbps in both directions, which is a
much bigger share of our upload bandwidth. (Welcome to asymmetric connections.)
HTTP tends to be highly asymmetric, and we want it to be fast, so we allocate the most
download bandwidth to it.

Bandwidth Allocation

How HFSC Works

Imagine that an elevator arrives every second, with space to carry some packets to the other
side.
Packets are assigned to queues by firewall rules. In pfSense, the queue has the opposite
direction to the firewall rule. So a rule that allows incoming packets places the replies into
the specified queue. That’s normally what you want, because in most client-server protocols,
the replies from the server are much bigger than the request.
So you have a rule that allows HTTP connections outwards. The replies are placed in a
queue of your choice, coming back inwards.
pfSense uses the FreeBSD ALTQ framework, with a choice of schedulers:
Priority Queueing (PRIQ)

Takes packets from the highest-priority queue first, then the second, and so on until it
reaches the bandwidth limit assigned to the interface. It’s easy for high-priority traffic

http://www.openbsd.org/faq/pf/queueing.html
http://www.openbsd.org/faq/pf/queueing.html#priq

to take all the bandwidth, leaving low-priority traffic with none. Not recommended.
Class Based Queueing (CBQ)

Divides a network connection’s bandwidth among multiple queues or classes. Queues
are arranged in an hierarchy. Child queues are created under the root queue, each of
which can be assigned some portion of the root queue’s bandwidth. Queues are served
in strict priority order. If any bandwidth remains, it can be borrowed by other queues to
ensure that no bandwidth is wasted.

Hierarchical Fair Service Curve (HFSC)
Similar to CBQ, but adds real-time guarantees (bounded delay). This allows packets to
skip the queue if their delay exceeds a fixed amount.

We will use HFSC for this exercise.

Configure pfSense as your router
To do these exercises using pfSense, configure your virtual network as follows:

In other words:

• The external interface of the pfSense virtual machine (Network Adapter 1) is Bridged
with the external interface of your server (probably eth0).

• If your server has two network interfaces, then the internal interface of the pfSense
virtual machine (Network Adapter 2) is Bridged with the internal interface of your
server (probably eth1), and so is the only network interface (Network Adapter 1) of your
client Virtual Machine. This allows you to connect laptops to eth1 and use them to test
your connection, as well as the client Virtual Machine.

• If your server has only one network interface, then the internal interface of the pfSense
virtual machine (Network Adapter 2) is connected to the Internal Network pfsense, and so
is the only network interface (Network Adapter 1) of your client Virtual Machine. This
only allows you to test your connection from the client Virtual Machine.

Configure the Interfaces
We need to set the total bandwidth and the scheduler on each interface:

http://www.openbsd.org/faq/pf/queueing.html#cbq
https://calomel.org/pf_hfsc.html

• Open the pfSense webConfigurator and log in.
• From the menu choose Firewall/Traffic Shaper.
• Click on the WAN interface.

• Check the box Enable/disable discipline and its children.
• Ensure that the scheduler type is set to HFSC.
• Set the Bandwidth to 256 Kbit/s.
• Click on the Save button.

Now we need to add a queue to the interface.

• Click on the Add new queue button.

• Check the box Enable/Disable queue and its children.
• For the Queue Name enter Other.
• Check the box Default queue.
• For the Description enter All other traffic.
• For the Bandwidth enter 20 and choose %. * This is the WAN interface, so we are

configuring the upstream bandwidth.
• Click on the Save button.

Repeat the whole process for the LAN interface, but set the Bandwidth of the interface to
1024 Kbit/s instead of 256. Create a queue called other on the LAN interface as well, but
with the Bandwidth set to 17.5%.

Notice that pfSense tells you that you need to apply the changes to the traffic shaper
configuration. Click on the Apply button.
Questions:

• Why do we have to create a queue?
• Why do we have to make it the Default queue?
• What speed will traffic be limited to on this interface?
• Which queue will all traffic be placed into, and why?

Answers:
There needs to be at least one queue, otherwise pfSense will not apply any bandwidth limits.
If there is no Default queue, then traffic will not be placed into any queue, and therefore not
be limited at all. pfSense will complain if there is at least one queue on the interface and
none of them is the default queue, but it doesn’t complain if there are no queues at all, it just

doesn’t work.
No traffic is classified by any firewall rules, yet, so all traffic will go into the default queue.

Testing
From a computer behind the pfSense router (either your laptop or the client Virtual
Machine), download a large file, for example:

$ wget -O /dev/null ftp://www.mirrorservice.org/sites/mirror.centos.org/6/isos/x86_64/CentOS-6.4-x86_64-bin-DVD1.iso

What speed do you get? How does it compare with the speed allocated to Other traffic
above?
What happens if you edit the Other class on the LAN interface, enable Upperlimit and set the
Upperlimit m2 to 35%?
You should get a download speed of approximately 128 kBps, which equals 1024 kbps. This
is because the Other class is allowed to borrow more bandwidth until it reaches the
Upperlimit, or the speed limit on the interface, whichever is lower. In this case there is no
Upperlimit set, so it can borrow up to 1024 kbps.
If you set an Upperlimit of 35% then it should not be able to use more than 35% of 1024
kbps, which is 44.8 kBps.

Traffic and Ping times
Try pinging the pfSense firewall (which will have the IP address 192.168.1.1 unless you’ve
changed it in class.)
What happens to ping times with and without a download in progress? Why the difference?
Without a download in progress, you should see very short ping times, around 1 ms:

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=0.480 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=0.385 ms
64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=0.537 ms
64 bytes from 192.168.1.1: icmp_req=4 ttl=64 time=0.350 ms
64 bytes from 192.168.1.1: icmp_req=5 ttl=64 time=0.454 ms

With a download in progress, you should see much longer ping times, around 150 ms:

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=147 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=136 ms
64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=154 ms
64 bytes from 192.168.1.1: icmp_req=4 ttl=64 time=163 ms
64 bytes from 192.168.1.1: icmp_req=5 ttl=64 time=132 ms

This is because the ping packets must wait in the queue behind the download packets, when
a download is in progress.
We can reduce this, at the cost of some dropped packets, by reducing the Queue limit on the
WAN interface, Other class, to 5 or 10 packets. If a ping arrives when the output queue on
the interface is full, then the reply packet will be dropped instead of placed in the queue.

Adding more queues
Edit the WAN interface and add two new classes:

• From the pfSense menu choose Firewall/Traffic Shaper.

• Click on the WAN interface.
• Click on the Add new queue button.
• Check the box Enable/Disable queue and its children.
• For the Queue Name enter VoIP.
• Make sure that the checkbox Default queue is not checked.
• For the Description enter Voice over IP.
• For the Bandwidth enter 50 and choose %. * This is the WAN interface, so we are

configuring the upstream bandwidth.
• Check the box Linkshare and enter 30% for the m2 value.
• Click on the Save button.

Add another queue called HTTP, with the description Web traffic, with 30% bandwidth
and 30% linkshare.
Edit the LAN interface and add a queue called VoIP, as above, but with 12.5% bandwidth.
Finally add another queue to the LAN interface, named HTTP, as above, but with 70%
bandwidth.

Filtering traffic into queues
We use firewall rules to assign traffic to a queue. The rule allows the outbound traffic, and at
the same time assigns the returning packets into a queue.

• From the pfSense menu choose Firewall/Traffic Shaper.
• Click on the LAN tab.

If you already have a rule that applies to outbound HTTP traffic, you will need to change it,
instead of creating a new rule:

• If you create a new rule before that rule, it will override that rule because the firewall
will match the new rule first.

• If you create a new rule after that rule, then it will never be hit, and your traffic will
never be placed into the http queue.

If you have two rules left over from the Web Caching session, one which allows HTTP from
the proxy server and one which blocks HTTP from all other computers, then you need to
decide whether to only allow and restrict the speed of HTTP from the proxy server, or to
allow all computers again.
I recommend that you modify the proxy server rule, to restrict traffic through the proxy.
You’ll also need to use the proxy server when conducting download speed tests below.

Adding filtering rules
• Click on the Add Rule button.

• For Action choose Pass. (should be the default).
• For Interface choose LAN (should already be set to this).
• For Destination port range choose HTTP.
• For Description enter Place web traffic into http queue.
• For Ackqueue/Queue click on the Advanced button, and choose none/http. * This is

backwards for some bizarre reason. You probably always want to specify the queue and
not the ackqueue).

• Click on the Save button.
Create another rule to filter UDP traffic into the VoIP queue:

• Click on the Add Rule button.
• For Action choose Pass. (should be the default).
• For Interface choose LAN (should already be set to this).
• For Protocol choose UDP.
• For Description enter Place UDP into VoIP queue.
• For Ackqueue/Queue click on the Advanced button, and choose none/voip.
• Click on the Save button.

Finally, create a very similar rule to place ICMP traffic (pings) into the VoIP queue. This
allows us to measure VoIP latency and packet loss using the ping command.
You should see a prompt to apply changes to the firewall rules:

Click on the Apply changes button.

Note that we don’t need to classify any traffic as Other. Because this is the default queue, all
unclassified traffic will be placed in it automatically.

Testing
What effect is this likely to have on download speeds and ping times?

• Download speed is still about the same (119 kBps).
• Ping times massively reduced, to an average of 6 ms. (compared to 0.6 ms with no

cross traffic, and 50-600 ms with cross traffic in the same queue).
How do classes share traffic?
If you run two downloads at the same time, for example run the following commands in
separate terminals or on separate client VMs:

$ wget -O /dev/null ftp://www.mirrorservice.org/sites/mirror.centos.org/6/isos/x86_64/CentOS-6.4-x86_64-bin-DVD1.iso
$ wget -O /dev/null http://www.mirrorservice.org/sites/mirror.centos.org/6/isos/x86_64/CentOS-6.4-x86_64-bin-DVD1.iso

They should share bandwidth in the ratio of the Bandwidth assigned to each queue. So we’d
expect to see something like this, assuming that the VoIP bandwidth is not being used, and
therefore shared between the other classes in the ratio of their bandwidth allowance.
Protocol Realtime/Minimum Linkshare Total (%) Total (kbps) ========
================ ========= =========
============ HTTP 70% 10% 80% 819 FTP 17.5% 2.5% 20% 205
======== ================ =========
========= ============
Unfortunately the allocations are not very accurate, probably because the queues are
sometimes empty, so there’s no packet to send (see How Unfair can Weighted Fair Queuing
be? for details of their results.)
You can see the current bandwidth used in each queue by choosing Status/Queues from the
pfSense menu, which will give you a page like this:

Note that the Queue Length will vary as the TCP streams try to adjust their speed to the
amount allocated by the traffic shaping. Every dropped packet will cause a TCP stream to
reduce its speed, and cause the queue length to drop. The TCP stream will then try to adjust
its speed slowly upwards, searching for the limit again. When the speed is higher than the
allocated bandwidth, the queue will lengthen. When it becomes full again, another packet
will drop and the speed will be reduced again. This process repeats as long as the TCP

http://eden.dei.uc.pt/~edmundo/Conf%20Internacionais/CI022%202000%20ISCC%20Quadros_1.pdf
http://eden.dei.uc.pt/~edmundo/Conf%20Internacionais/CI022%202000%20ISCC%20Quadros_1.pdf

stream is running, like this:

Classifying inbound connections
Put a large file on the internal web server (Squid proxy VM). Add a port forwarding rule in
pfSense, classifying traffic as HTTP:

• Choose Firewall/NAT from the pfSense menu.
• On the Port Forwarding tab, add a new rule.
• For Destination port range choose HTTP.
• For Redirect target IP enter 192.168.1.100 or the IP address of the internal web

server/Squid proxy VM.
• For Redirect target port choose HTTP.
• For Description enter Forward HTTP to internal web server.
• Click on the Save button.

Now click on the Edit button next to the rule to edit it again, scroll down to Filter rule
association and click on View the filter rule.
Scroll down to Ackqueue/Queue, click on the Advanced button and choose none/none. Then
click on the Save button.
We also want to ping the pfSense external interface from outside, to measure the queue
responsiveness. To do that, add a rule that Passes:

• Protocol ICMP, ICMP type echo-request
• Destination: WAN address
• Description: Allow pings to pfSense external.

You should see a prompt to apply changes to the firewall rules:

Click on the Apply changes button.
How can you test this?
Try to retrieve the file using the pfSense firewall’s external IP address, which is forwarded to
the internal server, and assuming that the pfSense WAN IP address is 192.168.6.128, use the
following command:

$ wget http://192.168.6.128/bigfile -O /dev/null

And ping the external interface. What ping times do you get?
Now edit the NAT rule again, View the filter rule, and change the Ackqueue/Queue to
none/http. Save the rule and click Apply changes.
You’ll need to start the wget command again. What happens to the ping time, with and
without the wget running?

FIN
Any questions?
Have we met the objectives?

• Configure traffic queues in pfSense
• Classify traffic into queues
• Monitor and debug bandwidth management

Please let us know if we haven’t.

	About these workshops
	Web Proxies and Caches
	Objectives
	License

	Introduction
	What is a web proxy?
	Forward and Reverse Proxies
	Why use web proxies?
	Benefits of using a web proxy
	What is a web cache?
	Why use web caches?
	Why not to use web caches?
	Not transparent
	Effectiveness is falling
	Hardware requirements
	Single point of failure

	Getting started with Squid
	Basic installation
	Configuring your browser
	Testing the installation
	Access control by IP address
	Why do you deny me?
	Reading the logs
	Don’t deny me!
	Reloading and restarting Squid
	Reverse proxies and open proxies

	Cache Size
	Disk cache size
	Memory usage

	Squid Access Control
	Access control elements
	ACE types
	The srcdomain ACE: a special case
	ACEs with multiple values
	Access control rules
	Rules with multiple ACEs
	Rule processing examples
	Access control practice
	Solutions

	Web Proxies and SSL
	What can we do about it?
	HTTP and CONNECT requests
	Results of blocking SSL requests

	Forcing people to use the proxy
	Configure pfSense as your router
	Proxy auto configuration
	Creating a PAC file
	DHCP server settings in pfSense
	Testing Proxy Auto Configuration

	Proxy Authentication
	About RADIUS
	Setting up a RADIUS Server
	Installing FreeRADIUS on pfSense
	Configuring FreeRADIUS
	Adding Users
	Testing RADIUS Authentication
	Squid RADIUS Authentication

	Squid Delay Pools
	Classes of delay pools
	Request routing
	Limitations of pools
	Simple example
	More advanced configuration

	FIN
	Objectives
	License

	Introduction
	What is bandwidth management?
	Wired Magazine’s take
	What are the limitations?
	What can we do with pfSense?
	Why use pfSense?
	How do we start?
	Kilobits and kilobytes
	Example configuration
	Bandwidth Allocation
	How HFSC Works
	Configure pfSense as your router
	Configure the Interfaces
	Testing
	Traffic and Ping times
	Adding more queues
	Filtering traffic into queues
	Adding filtering rules
	Testing
	Classifying inbound connections

	FIN

